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Background
Short tandem repeats (STRs), also known as microsatellites, are directly adjacent repeti-
tions of specific nucleotide motifs in a genome. STR units are diverse with various com-
positions of nucleotides and of different repeat unit sizes (generally ranging from 1 to 
10). For example, GGG​GCC​ is a hexanucleotide STR motif in C9orf72 that is associated 
with amyotrophic lateral sclerosis (ALS), while CAG is a well-known trinucleotide repeat 
motif in several genes associated with repeat expansion disorders. More than half mil-
lion STRs have been catalogued from the reference genome, covering approximately 3% 
of the human genome [1]. Repeat expansions of specific STRs, including those in exons, 
UTRs or introns, are known to cause various human diseases. To date, over 40 neuro-
logical disorders have been found to be associated with trinucleotide repeat expansion, 
including Huntington’s diseases [2], the spinocerebellar ataxias [3], fragile X syndrome 
[4], Friedreich’s ataxia [5], and others [6–8]. Additional human diseases caused by repeat 
expansions have been found recently [9–19], partly because of the recent development 
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of long-read sequencing technologies. In various repeat expansion diseases, repeat 
count of STR units is found to correlate inversely with the age of onset: larger repeat 
expansions are usually associated with earlier age onset of the disease [20, 21]. Thus, the 
identification of novel STRs and the quantification of repeat counts in known STRs are 
critically important to the study of repeat-associated human diseases and the eventual 
development of therapeutic strategies.

The current approaches to determining repeat counts of STRs include Southern blot 
analysis, capillary electrophoresis, and, in some cases, Sanger sequencing. However, 
these techniques are labor intensive and time-consuming for large-scale STR detec-
tion and cannot be applied at genome-wide scale. Next generation sequencing, such as 
Illumina short-read techniques, paved a way for genome-wide STR detection, and vari-
ous computational methods have been developed for assisting this task, such as lobSTR 
[22], RepeatSeq [23], STRviper [24], TREDPARSE [25], HipSTR [26], ExpansionHunter 
[27], and STRetch [28]. However, the length of reads in short-read techniques usually 
ranges from 100 to 150 bp (base pairs), which are much smaller than pathogenic STR 
expansions that are hundreds of or even thousands of base pairs in length. Thus, short-
read techniques have limited power to detect pathogenic STR expansions. Long-read 
sequencing techniques, such as PacBio and Oxford Nanopore sequencing, can generate 
much longer reads with up to hundreds of thousands of bp. Longer reads can provide 
better alignment for pathogenic STRs using information from flanking sequences, and 
several computational tools have been developed to detect repeat counts based on long 
reads, including RepeatHMM [29], Tandem-genotypes [30], RepLong [31], and TRi-
CoLOR [32]. These tools together with long-read techniques have achieved great success 
in characterizing disease-associated STRs [9–12]. One drawback to long read data is the 
relatively high basecalling error rate (3 to 15%) [33] (although different strategies, such 
as linear consensus [34] or amplicon-based UMIs [35], were designed to reduce errors, 
additional cost is needed and the scalability is limited). More importantly, one less 
known limitation is that basecalling errors of nanopore sequencing are not uniformly 
distributed across genome in long-read data; instead, they are becoming much higher 
in repetitive regions (see the analysis below) when the size of repeat regions is very large 
(which is the case when there are repeat expansions in patient samples). Therefore, while 
existing approaches can use basecalled reads to analyze short STRs in healthy subjects, 
there can be substantial challenges in characterizing disease-associated and highly 
expanded STRs that are specifically observed in patients.

Signal data has been used to improve STR detections and reduce the bias in STR 
regions caused by higher error rates, before recent improvements in basecalling accu-
racy is made. De Roeck et  al. proposed NanoSatellite to detect STRs at the nanopore 
squiggle level using dynamic time warping and detected a 25 bp repeat unit, where the 
expanded alleles strongly increase risk of Alzheimer’s disease [36]. Meanwhile, Giebel-
mann et al. used profile hidden Markov model to identify STR regions and upstream/
downstream flanking sequences with the help of signal alignment to flanking regions, 
and their tool STRique has been evaluated on GGG​GCC​ repeats of FTD/ALS (Fron-
totemporal Dementia and Amyotrophic Lateral Sclerosis) synthetic sequences [37]. 
However, these tools rely on synthetic signals for various STR units and their flanking 
regions, which deviate from real signals. As evidenced in existing works [38–40], real 
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signals are commonly observed as a distribution rather than a signal value which is used 
as synthetic signals for a specific pore model. Therefore, analysis on datasets encoun-
tered in real-world settings is important to understand the characteristics of different 
computational approaches.

In this study, we propose a deep learning tool, DeepRepeat, to accurately detect STRs 
directly from nanopore electric signals, without using synthetic signals. DeepRepeat is 
based on the notion that directly adjacent STR units share similar nanopore signal dis-
tribution. It then converts real signals of a STR unit and its upstream and downstream 
STR units into RGB channels of a color image, where the height represents the signal 
range and the width represents STR unit size. Subsequently, we feed repeat and non-
repeat images into a deep convolutional neural network followed by a full connection 
network for classification. Based on alignment of all long reads for a specific STR locus 
in an individual, the information is summed from multiple long reads for the STR locus 
using a Gaussian mixture distribution. We evaluate DeepRepeat for repeat identification 
and count estimation on multiple STR datasets. Of particular interest in our evaluation 
is the CHM13 genome, which is the first telomere-to-telomere genome assembly that 
was recently published using a collection of sequencing approaches through consortium 
efforts. It is an interesting testing case because of the ability to resolve telomeric repeats 
accurately and because of the accurate quantification of long STR regions (unlikely to 
be pathogenic though). We also evaluated DeepRepeat on multiple datasets on healthy 
subjects and those with known repeat expansions. Our experiments show several unique 
advantages of DeepRepeat over existing methods. DeepRepeat is publicly available at 
https://​github.​com/​WGLab/​DeepR​epeat .

Results
Overview of DeepRepeat

The input of DeepRepeat is basecalled nanopore data with electric (ionic) signals, and 
the output is estimated repeat counts (Additional file 1: Fig. S1). There are three steps 
in DeepRepeat: converting signals to images, using deep learning for STR prediction 
on each nucleotide, and summarizing the predictions on multiple reads to infer repeat 
counts.

One novel and key step of DeepRepeat is to convert electric signals to images, which 
is illustrated in Fig. 1 with trinucleotide repeat as an example for simplicity. In Deep-
Repeat, signal distribution of each STR unit is transformed into a matrix, and three 
matrices from the three consecutive STR units are converted as three channels of a 
color image. Then, the self-similarity between adjacent repeat copies in a STR region 
is used to infer whether nucleotides are in a specific STR region. With this property in 
mind, an image of three consecutive STR units is expected to have signals at the same or 
close corresponding positions in each channel with a color close to white, and the rest of 
image is black. In an ideal case, images of repeats only have several white dots with black 
as background, while images of non-repeats have many mixed colors that are randomly 
dispersed. Using this transformation, the STR detection is creatively converted to an 
image recognition problem, and then deep convolutional network in the field of image 
processing is used to identify STR units from nanopore signals. Finally, after making the 
prediction of whether a base in long reads is in a repeat region or not, the long reads are 

https://github.com/WGLab/DeepRepeat
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aligned against a reference genome, and the results on multiple reads are summarized to 
quantify the repeat counts using a Gaussian mixture model.

In this section below, we will first demonstrate higher error profiles of repeat expan-
sion regions, which is a little-known fact because most researchers do not focus analy-
sis on highly expanded repeat region. We then evaluate DeepRepeat on individual loci 
and on a genome-wide scale, including assessment on (i) telomeric/long STR regions 
in CHM13, (ii) a CAG repeat dataset of the HTT gene of 11 Huntington’s disease sam-
ples, (iii) a GGG​GCC​ repeat dataset of synthetic sequences [37], (iv) nine STR loci with 
validation by Sanger sequencing, (v) 57 manually curated STR loci for two different 
genomes (HX1 and NA12878), and (vi) genome-wide prediction of STR bases in two 
genomes (HX1 and NA12878) with cross-genome independent testing strategy.

Estimation of mismatch error of repeat regions

We used two published nanopore long-read datasets [37] to estimate how repeat expan-
sion affects basecalling errors in Oxford Nanopore sequencing. We performed re-base-
calling using two recently released algorithms, including Guppy v3.3.3 and v5.0 (the 
two Guppy versions differ substantially in the underlying algorithms) together with 
Albacore. One dataset represents synthetic sequences with five distinct repeat counts 
(8, 32, 50, 56, and 76) of the GGG​GCC​ motif, while the repeat locus of the reference 
sequence has 10 repeat counts. These long reads from five groups have highly similar 
flanking regions of repeat but different repeat counts, and a general alignment process 
will complicate further analysis. Thus, we generated four different reference sequences 
with 8, 32, 53, and 76 repeat counts (repeat counts 50 and 56 are close to each other, and 

Fig. 1  DeepRepeat workflow: converting nanopore signals to images for deep learning prediction. Each 
dot in the curve in black represents an event in nanopore data and is represented by a column in a channel. 
R: the size of repeat motif, for example, R = 3 for trinucleotide repeats. Del: deletion indicating 1 bp deletion 
compared against the repeat motif of interest; Ins: insertion indicating 1 bp insertion compared against the 
repeat motif of interest. In the bottom and the left, an ideal image representation of repeat regions is white 
dots, while the image representation of non-repeat regions is dispersed red or blue or green or their mixture. 
Each basecalled nucleotide in the sequence of the bottom subfigure is for a column for demonstration 
purpose



Page 5 of 27Fang et al. Genome Biology          (2022) 23:108 	

thus are considered together), and then aligned all long reads to the reference sequences 
using minimap2 [41]. Note that a long read may be aligned against multiple reference 
genomes, but only one of them is considered as primary alignment with the maximum 
alignment score, and the primary alignments should be aligned against the reference 
sequence with the closest benchmark repeat counts. For example, if a long read has a 
primary alignment against a reference with 32 repeat counts, it is considered to be from 
a group with 32 repeat counts. With this strategy, all long reads were assigned into dif-
ferent groups.

We then analyzed the mismatch error for the repeat regions and the flanking regions 
(Fig. 2). We found that for the reads belonging to the group with 8 repeats, the mismatch 
error rate (5.6%) in the repeat region is higher than that (3.6%) in the flanking region 
(Fig. 2b). However, when the repeat size expands to 76 (Additional file 1: Fig. S2), the 
mismatch error rate in the repeat region increases to 10%, which is 78% higher than that 
of the flanking region (5.6%) (Fig.  2a). The above analysis was based on Guppy v3.3.3 
basecalling. We also conducted a similar analysis on nanopore reads basecalled via 
Albacore v2.3, and the conclusion is similar (Additional file 1: Fig. S4). All the analysis 
indicates that the mismatch error rate significantly increases as repeat size is becoming 
larger. Basecalling errors by Guppy 5.0.7 decrease, but are still higher in much longer 
repeat regions as shown below.

We analyzed another dataset of a BAC clone [37] where the repeat copies could be up 
to 800 GGG​GCC​ units. Using a similar strategy above, we investigated the mismatch 
error of repeat regions. The results shown clearly demonstrate that the repeat region 
with 800 copies has much higher mismatch error rate than its flanking regions (Fig. 2c, 
d, Additional file  1: Fig. S3). In contrast, the repeat region with 15 copies has similar 

Fig. 2  Mismatch error rate for nanopore long reads with different repeat lengths. Repeat regions are 
highlighted in yellow. a and b have 76 and 8 G4C2 repeat copies for 2 synthetic sequences respectively, while 
c and d have ~ 800 and 15 repeat copies for a BAC clone. Each dot is for an averaged mismatch error of a 
50 bp region to reduce randomness. The long-read data were released by [37] and rebasecalled via Guppy 
v3.3.3 (solid lines) and Guppy 5.0.7 (dashed lines). A summary of error rate statistics is shown in Additional 
file 3
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mismatch error rate with the flanking regions (Fig. 2d). Similarly, Giesselmann et al. also 
concluded that single-read base calling at the genomic level becomes unreliable in long 
G4C2 repeats [37]. These results demonstrate that the mismatch error rate of nanopore 
sequencing can increase substantially in genomic regions with highly expanded STRs, 
which may bias results from algorithms that rely on basecalled reads rather than raw 
nanopore signals.

Detection of long STRs in CHM13

We next tested DeepRepeat on detection of long repeats in the CHM13 genome, using 
models trained on NA12878 and HX1. CHM13 is a well-studied genome with both 
PacBio HiFi and Oxford Nanopore long-read data publicly available [42]. The CHM13 
cell line has near-complete homozygosity, with a few exceptions in specific regions. The 
telomere-to-telomere consortium has finished the de novo assembly of CHM13 primar-
ily based on HiFi reads, but supplemented with data from other short- and long-read 
platforms. Since CHM13 assembly is shown to be highly reliable, repeat counts from 
the assembly can be considered as a benchmark to evaluate the detection of long repeats 
from nanopore data only. In this subsection, the benchmark “true” repeat counts in 
CHM13 are directly calculated from the published assembly (v1.1).

We first tested DeepRepeat on the detection of telomeric repeats in CHM13. Each 
telomere was quantified separately using 30X nanopore data of CHM13. Quantification 
of telomere repeat is challenging because the repeat is at the end of the chromosome 
and only one flanking region is available. After removing reads that are not confidently 
mapped to the flanking region, the average number of reads per telomere was 20. The 
comparison of DeepRepeat estimation and CHM13 assembly is shown in Fig.  3. The 
estimation of DeepRepeat is consistent with the CHM13 assembly (Pearson correla-
tion = 0.83), but with some variations. The reasons might be that (1) we did not use the 
raw signals of the full data set (126X) due to storage limitations; (2) the repeat count 
variation in the telomere regions is larger than regular STR regions because the telomere 
length can be mosaic in a cell line; and (3) since there is only one flanking region for 
a given telomere, it is unknown if the full length of the telomere had been sequenced 
completely for each read. The standard deviations of repeat count between reads are 
about 100 in the telomere regions. Two other tools, RepeatHMM and STRique [37] can-
not detect this type of repeat (either detected nothing or reported an error). This is not 
surprising because other repeat estimation methods need accurate alignment of reads 
against both flanking sequences of repeat regions. To the best of our knowledge, Deep-
Repeat is the only tool that quantifies telomeric repeats and generates an overall estima-
tion as well as a per-read estimation using signal data.

Next, we benchmarked DeepRepeat, RepeatHMM [29], and STRique [37] (a method 
using synthetic signals) on 439 STR regions on the CHM13 genome. These are all STR 
regions that are > 200 bp and not within a 500-bp flanking region of another STR. We 
removed adjacent STRs because many of the adjacent STRs have similar sequences 
and it is hard to tell if they need to be merged or not without manual examination. The 
lengths of the 439 STR regions range from 200 bp to 2374 bp, and their coordinates are 
shown in Additional file 2: Table S1. The evaluation results are shown in Fig. 3, where it 
is clear that DeepRepeat achieves better performance than RepeatHMM and STRique. 
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For example, the average absolute difference between estimated and benchmark repeat 
counts is 3.56, 4.47, and 11.2 for DeepRepeat, RepeatHMM and STRique, respectively. 
DeepRepeat reduces the estimation errors by 20% compared to RepeatHMM and 68% 
compared to STRique. Thus, DeepRepeat outperforms existing methods to detect very 
long STR repeats.

Detection of CAG repeats in HTT on Huntington’s disease cell lines

We next tested DeepRepeat for the estimation of repeat counts for 11 Huntington’s 
disease (HD) cell lines, using the model trained on an in-house nanopore data set of 
HD samples. HD is a neural degenerative disease caused by CAG repeat expansions in 
exon-1 of the HTT gene. In this study, we generated high coverage (~4000X) targeted 
nanopore sequencing data of the HTT exon-1 region of 11 HD cell lines and also per-
formed Sanger sequencing to determine the repeat counts. The repeat counts of the 
pathogenic expanded allele for the 11 samples range from 39 to 72, while the repeat 
counts for normal allele are between 17 and 21 with one exception of 26. We run Deep-
Repeat, RepeatHMM [29], Tandem-genotypes [30], and STRique [37] on this data, and 

Fig. 3  Benchmarking repeat quantification on CHM13. a Estimated telomeric repeat counts against 
benchmark repeat counts determined on CHM13 v1.1 assembly (Pearson correlation = 0.83). b–d 
Quantification of 439 long STR regions in CHM13 using DeepRepeat (b), RepeatHMM (c), and STRique (d). 
The distribution of absolute difference between estimated repeat counts and the truth set (CHM13 v1.1 
assembly) is shown
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compared their performance against repeat counts inferred from Sanger sequencing. 
The results are shown in Fig. 4.

First, we downsampled the high coverage nanopore sequencing data to 15X cover-
age to mimic whole-genome sequencing data with lower coverage (i.e. a PromethION 
cell on a single human genome) and tested the accuracy of DeepRepeat, RepeatHMM 
and STRique. This process was repeated 3 times, and the results are shown in Fig. 4a, 
c. All the three methods have very high Pearson’s correlation with the benchmark 
(> 0.99), but DeepRepeat performs better than the others. Meanwhile, we also cal-
culated averaged absolute error of each method. The averaged absolute errors (as 
shown in Fig. 4c) are 1.19, 1.2, and 1.47 for DeepRepeat, RepeatHMM and STRique, 

Fig. 4  Repeat count estimation on 11 Huntington’s disease samples with CAG repeats and on NA12878. a 
The correlation of estimated repeat counts against benchmark repeat counts on ~15X downsampling data 
(3 times for each data). b The difference of estimated repeat counts minus benchmark repeat counts for 
the four methods. c Averaged absolute difference (Error) of estimated repeat counts and benchmark repeat 
counts. “All” for all repeat counts, while “pathogenic” for only pathogenic repeat counts. d The distribution 
of estimated repeat counts from all long reads for a sample (ND30422) whose benchmark repeat counts 
are 18 and 40 (shown by a down arrow in magenta). e The distribution of estimated repeat counts from all 
long reads for another sample (ND30626) whose benchmark repeat counts are 21 and 41 (shown by a down 
arrow in magenta). The distribution for more samples is in Additional file 1: Fig. S5. d, e: x-axis for estimated 
repeat counts; y-axis for the number of supporting reads for each estimated repeat count. f The difference 
of supporting reads between DeepRepeat and other methods (in percentage = (o-D)*100/D where D is the 
number of supporting reads by DeepRepeat, while “o” is the number of supporting reads by other methods 
(RepeatHMM, Tandem-genotypes and STRique)
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respectively. We also calculated the average absolute errors for pathogenic alleles 
only, because pathogenic repeats are more important for clinical diagnostic purposes. 
The error rates are 0.8, 0.89, and 1.13 for DeepRepeat, RepeatHMM and STRique, 
respectively. In both cases, DeepRepeat achieves lower error than other methods. Of 
note, DeepRepeat achieves much lower error and is several times faster than STRique 
(both of them analyze nanopore signals data; speed comparison is described in the 
section below).

We also tested the methods on the original high-coverage data, and the results are 
shown in Fig. 4b. All four methods provide accurate estimation of repeat counts with the 
difference of estimated repeat counts and benchmark repeat counts between − 5 and 4, 
and estimated repeat counts have excellent correlations with benchmark repeat counts. 
In practice, this high-coverage dataset is far more than enough for DeepRepeat. We 
generated this because it is a targeted sequencing and the MinION flow cell has more 
capacity than needed.

To further examine how long reads support estimated repeat counts for a sample, we 
illustrated the distribution of estimated repeat counts of long reads in Fig. 4d and e for 
two samples (the distribution for other samples is shown in Additional file 1: Fig. S5). 
All four methods show clear peaks around the true repeat counts. However, DeepRe-
peat has more supporting reads to infer repeat counts, especially for the pathogenic 
(expanded) allele (supporting reads for a called allele are those reads with similar repeat 
counts to the peak of each method. Same thresholds were used for different methods). 
This is particularly important, since typically fewer reads are available for longer alleles 
vs. normal alleles due to differences in sequencing efficiency and amplicon generation. 
To evaluate how many more long reads with expected repeat counts can be used for STR 
detection, we summarized the number of supporting reads for inferring repeat counts in 
Fig. 4f and Additional file 1: Table S2. For pathogenic STR alleles, DeepRepeat detected 
~ 2–20% more supporting reads than the two FASTQ-based methods (RepeatHMM 
and Tandem-genotypes) on 10 samples and 23% more supporting reads than STRique. 
For normal STR alleles, DeepRepeat detects comparable number of supporting reads as 
RepeatHMM, and more supporting reads than Tandem-genotypes and STRique. The 
more supporting reads detected by DeepRepeat may explain why DeepRepeat works 
better in low coverage data (which is the case when performing whole-genome sequenc-
ing), as it is capable of using more information than competing approaches. In summary, 
unlike the other STR-detection methods, DeepRepeat identifies more repeat reads, 
allowing better quantification of repeat counts from raw electric signal intensity data, 
which is critical for whole genome data analysis with low coverage.

Evaluation on synthetic sequences with GGG​GCC​ repeats

DeepRepeat was next assessed on synthetic GGG​GCC​ repeat sequences, where five syn-
thetic molecules were sequenced [37] after polymerase chain reaction (PCR). The five 
sequences have 8, 32, 50, 56, and 76 GGG​GCC​ repeat units, respectively. The nanopore 
data of the first three sequences were used for training DeepRepeat. Please note that 
only mapped nucleotides are used in the training process and the training data consists 
of 28,512 long reads from the 3 samples. That is, only 3 GGG​GCC​ repeat units in the 
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reference sequence and their flanking sequences are used in training process and the 
training data is comparatively small for DeepRepeat.

The nanopore data for the last two sequences were used to evaluate DeepRepeat. The 
estimation of repeat counts by RepeatHMM, DeepRepeat and Tandem-genotypes is 
shown in Additional file 1: Fig. S6 (STRique is not used in this comparison since it was 
trained and optimized on these synthetic sequences). In Additional file 1: Fig. S6a and 
S6b, all three methods have peaks closed to 56 and 76, demonstrating accurate estima-
tion of repeat counts. Other repeat counts are also detected around 32 and 50 (Addi-
tional file 1: Fig. S6a), and 32, 50 and 56 (Additional file 1: Fig. S6b). This could reflect 
inaccurate demultiplexing of the original data, since all synthetic sequences were bar-
coded for mixed nanopore sequencing and then demultiplexed into different groups 
[37]. In summary, this analysis shows that DeepRepeat can be trained on a relatively 
modest training data (small number of repeat units) to achieve reasonable performance 
on alleles with much larger repeat counts.

Evaluation of DeepRepeat on 57 manually curated STRs in the human genome

To obtain a well-trained model of DeepRepeat on a genome-wide scale, we trained it on 
all STR regions in GRCh38 and tested on 57 manually curated STRs. To generate the 
whole-genome training data we first downloaded whole-genome annotations on STRs 
from the UCSC genome browser [43], and then refined the whole genome repeat regions 
to obtain non-overlapping and perfect STR loci for GRCh38. Subsequently, we grouped 
whole-genome STRs according to their repeat units, and trained each model as a group. 
Taking trinucleotide repeats for example, there are 10 groups for 60 trinucleotide repeat 
motifs (excluding mononucleotide repeats). The grouping is necessary because an STR 
region may contain multiple motifs at the same time. For instance, in a STR region of 
CAG​CAGC​AGCA​G  and its complementary CTG​CTGC​TGCT​G, the three motifs 
CAG, AGC, and GCA all occur, while CTG, TGC, and GCT all occur in the comple-
mentary strand. Thus, the six motifs are assigned as a group within a single DeepRepeat 
model. The example of group information used is provided in Additional file 1: Table S3.

We next used 2 whole genome nanopore sequencing data for human individuals, 
NA12878 [44] and HX1 [45], to assess the accuracy of DeepRepeat. We trained DeepRe-
peat on NA12878 and then tested the trained model on HX1 with 57 manually curated 
STRs, or vice versa. The 57 manually curated STRs represent well-known disease-
associated repeats or STRs widely used in forensic analysis. Since both NA12878 and 
HX1 are free from repeat expansion disorders, the repeat counts inferred from high-
coverage short reads data of NA12878 and HX1 would be a reliable benchmark. Fur-
thermore, both genomes have very high coverage short-read data (~300X for NA12878 
and ~142X for HX1) generated by Illumina sequencing, and thus, the repeat counts 
detected on short-reads provide an independent evaluation of the DeepRepeat output. 
As shown in Fig.  5a, b, repeat counts for the 57 manually curated STRs estimated by 
DeepRepeat were compared against the repeat counts on NA12878 and HX1 short-read 
data inferred by HipSTR [26]. On the NA12878 genome, the repeat counts inferred by 
nanopore data and short-read data have a correlation coefficient 0.92 with an average 
absolute difference of 1.64, while on the HX1 genome, the correlation coefficient is 0.91 
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with an average absolute difference of 1.62. This indicates that the majority of repeat 
counts inferred by DeepRepeat on nanopore data are similar to the repeat counts esti-
mated from high-coverage short-read data. In summary, we demonstrated the accuracy 
of DeepRepeat, even for relatively short STRs.

Evaluation of DeepRepeat on nine STR loci in NA12878 with Sanger sequencing

To further evaluate DeepRepeat, we selected nine STR loci (five trinucleotide STRs and 
four tetranucleotide STRs) and conducted Sanger sequencing on NA12878. As shown in 
Table 1, the length of nine STR regions ranges from 63 to 113bp in the reference genome 
of GRCh38/hg38, and the repeat counts detected from Sanger sequencing range from 
14 to 27. We then ran HipSTR on ~300X short-read data, and DeepRepeat on 38X long-
read data of NA12878 to determine the repeat counts of the nine STR loci (we manu-
ally checked the repeat count distribution for each locus to infer repeat counts, because 
some loci have limited supporting long reads).

We also run Tandem-genotypes and RepeatHMM and summarized all results 
in Table  1. Since the nine STR loci do not have longer than 150 bp repeat regions, 
RepeatHMM and Tandem-genotypes also achieved good performance on several 

Fig. 5  The performance of DeepRepeat with cross-genome testing strategy. a Repeat counts inferred by 
DeepRepeat on nanopore data against by HipSTR on high-coverage short-read data for NA12878 while 
DeepRepeat is trained on HX1. b Repeat counts inferred by DeepRepeat on nanopore data against by HipSTR 
on high-coverage short-read data for HX1 while DeepRepeat is trained on NA12878. c The whole genome 
performance for STR-nucleotide prediction by DeepRepeat. “Repeat Count Diff”: counts predicted by 
DeepRepeat minus the corresponding counts predicted by HipSTR
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loci, and both DeepRepeat using long reads and HipSTR using short reads detect 
similar repeat counts as Sanger sequencing (Table  1). For example, the TGC repeat 
at chr16:73,546,662–73,546,741 has two alleles with repeat counts of 22 and 24 (as 
shown in Fig. 6 and confirmed by Sanger sequencing), while HipSTR with 300X short 
reads detects 23 repeats for both alleles. DeepRepeat detects the two alleles with 22 
and 25 repeat counts. We also found that short-read sequencing data contain many 
reads that cannot completely span the repeat, and the short reads that do span the 
repeat have a 6 bp deletion, which may explain why HipSTR, even with 300X short 
reads, failed to detect the larger repeat allele (24 repeats). In contrast, DeepRepeat 
detected the two alleles and was consistent with the Sanger sequencing results in 
Fig. 6b. An example image in Fig. 6c shows a clear TGC repeat pattern.

HipSTR also failed to detect the CAC repeats at chr1:161,051,967–161,052,060 
(Table  1). We thus investigated the CAC repeat further: Fig.  7a clearly shows that 
there are no short reads spanning the repeat region despite that the overall cover-
age of short reads for NA12878 is 300X. In contrast, DeepRepeat is able to generate 
repeat counts for the two alleles which is consistent with the Sanger sequencing data 
(21 and 26 repeats for the two alleles). Figure 7b and an example image generated by 
DeepRepeat in Fig. 7c shows a clear CAC repeat pattern. Thus, DeepRepeat provides 

Fig. 6  The TGC repeats at chr16:73,546,662–73,546,736 and the upstream/downstream regions. a In IGV plots 
with both short-read (upper) and long-read (lower) sequencings. b Sanger sequencing. c An example of RGB 
images generated for this region. The boxes in yellow indicate the repeat region
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an accurate estimation of repeat counts. In Fig.  7a, there are notable indels in the 
repeat region, and these are expected: the reference genome for this region has 31 
repeats while the Sanger sequencing data shows 21 and 26 repeats for the two alleles 
in this sample (Fig. 7b).

Please also note that in these relatively short STR regions, HipSTR, RepeatHMM, and 
Tandem-genotypes can achieve better estimation on some loci, such as chr12:4,702,128–
4,702,202 and chr4:42,555,085-42,555,198 (Table 1). However, DeepRepeat achieves bet-
ter performance on long STR regions as demonstrated before.

Cross‑genome evaluation of DeepRepeat for base‑level repeat prediction

We next evaluated DeepRepeat for base-level repeat prediction on two whole-genome 
datasets. This evaluation is not to quantify repeat counts, but to assess if we can predict 
whether a given base is within a repeat or not. We cannot compare to other methods 
since they do not generate this type of prediction. For this analysis, we assumed that the 
labeled training data of STR loci and non-repeats in the reference genome are correct. 
Then, for each motif group, we used the DeepRepeat model trained on NA12878 to pre-
dict STR bases in HX1, or vice versa. Subsequently, we calculated precision, recall and 
F1 for each group where training data for a training group has more than 100 k training 
nucleotides. Groups with less training data are not considered since the training might 
not be enough to build a useful model. The results of repeat-nucleotide prediction are 
shown in Fig. 5c. The results show that DeepRepeat achieves a median recall of 0.878, a 
median precision of 0.856, and a median F1 of 0.868 on HX1. Also, we found a median 

Fig. 7  The CAC repeats at chr1:161,051,967–161,052,060 and the upstream/downstream regions. a In IGV 
plots with both short-read (upper) and long-read (lower) sequencings. b Sanger sequencing. c An example of 
RGB images generated for this region. The boxes in yellow indicate the repeat region
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recall of 0.861, median precision of 0.841 and median F1 of 0.842 on NA12878. For those 
genome-scale repeat regions and their flanking regions, ~ 89% nucleotides are correctly 
aligned for both HX1 and NA12878 with ~ 11% errors (including mismatches and indels 
with size less than 4 bp or the length of a repeat motif ). Long indels may be repeat expan-
sion and thus are not considered as errors. Since many sequence-based methods heavily 
relied on alignment for repeat size estimation, 89% would be their capped performance. 
The good performance of DeepRepeat demonstrates that DeepRepeat can accurately 
identify STR regions at a genome-wide scale.

Comparison of running time

Here, we investigated the running time of DeepRepeat and STRique on 33 downsampled 
HTT data as previously described, and found that DeepRepeat is tens of times faster 
than STRique: on a computing node with 24 CPU cores (Intel(R) Xeon(R) CPU E5-2680 
v3 @ 2.50GHz) and 128 GB memory, DeepRepeat used 120.6 seconds, while STRique 
used 3,624.8 seconds. Please note that both STRique and DeepRepeat process nanopore 
signals so that they are directly comparable.

In addition, we compared the running time of DeepRepeat against a sequence-based 
method RepeatHMM. RepeatHMM is chosen because it achieves the best performance 
in an independent critical assessment [46] and it is among a few methods with genome-
scale estimation function, yet many other computational tools can only handle candi-
date regions with known patterns. In our experiment, RepeatHMM uses an Univa Grid 
Engine computing cluster to process multiple jobs at the same time, while DeepRepeat is 
run on the same cluster system. The cluster system has tens of shared computing nodes, 
each of which has 24 CPU cores (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz) and 
128 GB memory. After that, the CPU time is summed for comparing RepeatHMM and 
DeepRepeat. On NA12878, DeepRepeat uses ~ 3.5 folds (~ 300 hours) of CPU running 
time more than RepeatHMM (~ 84 h), while the running time is ~ 5 fold higher on HX1 
(~ 418 h). This is to be expected, because DeepRepeat use nanopore signals as input 
while RepeatHMM takes base-called long reads as input. Nanopore signal data is tens 
of times larger than long reads: long reads on HX1 and NA12878 are about 287Gb and 
215Gb in uncompressed FASTQ format, while the nanopore signals is ~ 7 Tb in fast5 
format.

In summary, although this is not a direct comparison of running time due to various 
programming languages for implementation and two different data types, DeepRepeat is 
efficient to process signal data for a genome-scale scanning.

Discussion
In this study, we used a deep convolutional neural network to detect STRs from ionic 
signals in nanopore sequencing data by converting the STR detection problem into an 
image recognition problem, where the self-similarity of directly adjacent repeat units 
results in characteristic patterns in reconstructed images. We converted the signal dis-
tribution of repeat units into color images and then used the DeepRepeat framework to 
learn patterns of repeat images from non-repeat images. Through extensive testing on 
real data sets, DeepRepeat demonstrates excellent performance to infer STRs, especially 
very long STRs. DeepRepeat together with nanopore signal data thus provides a novel 
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method to detect STRs, addressing the challenge of high basecalling error rates on STRs 
inherent in nanopore data and the poor alignment in low-complexity regions of the 
human genome. Depending on the specific application scenarios, we believe that Deep-
Repeat can complement other repeat detection approaches that rely solely on sequence 
data and together characterize both novel and known repeats in different regions of the 
human genome from long-read whole-genome sequencing data.

In particular, we used DeepRepeat to detect long STRs for CHM13 and for 11 sam-
ples with Huntington’s disease with repeat counts ranging from 39 to 72 and found that 
DeepRepeat is powerful to detect larger repeat counts. Huntington’s disease is a well-
known disorder caused by trinucleotide (CAG) repeat expansion, and its severity and 
earlier age onset exhibit a clear association with larger repeat counts [2] (usually exceed-
ing 39 repeat counts). As nanopore technique advances, sequencing cost has been sub-
stantially decreased, and nanopore sequencing is becoming a feasible way to sequence 
a large set of patients targeting a specific region of interest for disorders such as Hun-
tington’s disease. In our testing, DeepRepeat achieves excellent performance with more 
supporting reads for larger repeat counts: this is particularly critical because in sequenc-
ing or PCR, reads with larger repeat counts are usually sequenced with less supporting 
reads than those with smaller repeat counts; more supporting reads detected by Deep-
Repeat for larger repeat counts means that DeepRepeat can use more information that 
are missed by other methods. DeepRepeat thus provides an efficient and effective way to 
analyze a large set of nanopore sequencing data for disease identification and risk pre-
diction. Moreover, users can extend well-trained DeepRepeat model with more training 
on their own data set for a specific repeat locus to achieve improved detection rate. This 
is critically useful for a large-scale study of certain expansion disorders such as Hunting-
ton’s disease.

We also wish to discuss the differences of nanopore sequencing with competing 
approaches for repeat quantification. For telomeric repeats, qPCR-based methods are 
among the most widely used approaches; however, they cannot distinguish telomeric 
repeats from different chromosomes and thus the quantification is an average repeat 
count of all telomeres. DeepRepeat can detect the repeat count of each telomere, based 
on the mapping of nanopore reads. The cons are that nanopore sequencing has much 
higher cost than traditional qPCR methods, and  it is difficult to perform amplicon-
based or capture-based nanopore sequencing for telomeric regions, and that it requires 
more computational resources for data analysis on whole-genome data. The tradi-
tional method for Huntington’s disease repeat quantification is PCR-based fragment 
analysis. Long-read sequencing has the advantage of high throughput. In our internal 
experiments, we can multiplex and sequence 500 HD samples per MinION flow cell, 
by using barcoded primers and high-fidelity long-range PCR. The PCR product can be 
several kb. In addition, we can call haplotyped genetic variants from long reads, includ-
ing repeat expansions and SNPs. This has strong clinical implications since understand-
ing the haplotype structure of a repeat region allows design of allele-specific therapeutic 
approaches. Traditional methods such as Sanger sequencing cannot provide haplotype 
information because they can only assay a 500–1000 bp region, despite higher accuracy 
in SNP and indel detection.
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In this study, we provide different well-trained repeat models according to the 
length of the repeat motifs and the motif groups. DeepRepeat will automatically 
chooses the model according to the input repeat motif. In the future, a generic Deep-
Repeat model may be generated for all possible STR motifs, since DeepRepeat is 
based on self-similarity of neighborhood signals. However, suitable training datasets 
are needed. Right now, we generated training data from NA12878 and HX1 according 
to GRCh38, but the occurrence instances of different motifs are highly unbalanced, 
and longer STR motifs have much less occurrences. Thus, it is not straightforward to 
have a balanced dataset to train a generic model, yet motif-specific trained models are 
used in the current study.

We also recognize that DeepRepeat has several limitations. DeepRepeat is a super-
vised deep learning method and requires a large amount of labeled training data. Here, 
we generated training data according to perfect STR regions in the whole genome of 
GRCh38. However, with larger STR motifs, there are fewer STR regions in whole-
genome data for training. As such, we have provided well-trained DeepRepeat models 
for STR detection with repeat unit size up to 6 bp. According to the input motif, a proper 
well-trained DeepRepeat model is automatically selected; but users might need to train 
a DeepRepeat model if the repeat motif of interest (for example, > 6 bp repeat motifs) is 
not provided here. A second limitation is that DeepRepeat is based on nanopore data, 
and it may not accurately identify mono-nucleotide repeats (homopolymers) such as 
mono-A/C/T/G repeats. Furthermore, DeepRepeat is trained to identify STR regions 
based on self-similarity in a local window. If two STR regions are separated by a few bp, 
DeepRepeat may call them as a single rather than two separate STR regions. Similarly, 
DeepRepeat is not designed to detect mutations or extensive polymorphisms in STR 
regions. Additionally, DNA modifications such as base methylations may alter nanop-
ore signals. Nonetheless, the limitations of DeepRepeat noted here may be overcome as 
more and more nanopore data become available.

Conclusions
DeepRepeat is a novel computational method to detect STRs from nanopore sequencing 
data through direct analysis of electric signals rather than basecalled reads. In particular, 
DeepRepeat allows the analysis of STRs within or close to very low-complexity genomic 
regions, such as telomeric regions, where other methods fail or have poor performance. 
Additionally, DeepRepeat uses more long reads on STRs that are unusable by other algo-
rithms, partially due to high basecalling errors in STR regions. This is important for 
pathogenic or likely pathogenic STR alleles because these alleles are usually longer and 
have fewer supporting long reads in sequencing data. Finally, the idea of converting sig-
nals to images in DeepRepeat provides an intriguing solution for many signal processing 
problems encountered in genomics settings with a deep learning framework.
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Methods
In this section, we discuss several types of data used in the study (STR regions, nano-
pore long-read data and short-read data), the framework of DeepRepeat, the methods 
to train and test DeepRepeat, the process of obtaining STR identification in CHM13, 
and wet-lab validation of several STRs.

STR regions used in DeepRepeat

Whole genome STR regions for genome‑scale DeepRepeat models

To obtain enough STR regions for training DeepRepeat models, whole genome STR 
regions defined by TRF (tandem repeat finder [47]) were downloaded from UCSC 
genome browser [43]. In the original file, there were 432,604 repeat records in GRCh38 
with various repeat motifs. However, these repeat records cannot directly be used for 
training or testing, because many of these repeat records substantially overlapped 
with different repeat units or were not exact repeat regions. Thus, the repeat records 
were refined by (i) using semi-global alignment to align repeat records in the original 
file against a simple repeat sequence of the similar length and (ii) obtaining matched 
STR regions which were 3+ times longer than repeat units (or 12+ bases long for dinu-
cleotides). Matched STR regions with small unmatched gaps were merged for a sin-
gle STR region. As a result, 280,343 STR regions were obtained for training or testing 
DeepRepeat.

Manually curated STR loci in GRCh38 to test DeepRepeat for estimating repeat counts

To evaluate DeepRepeat, 57 STR loci were manually curated, including 2 di-nucleotide 
repeat, 20 tri-nucleotide repeats, 33 tetra-nucleotide repeats, and 2 penta-nucleotide 
repeats. The detail is given in Additional file 1: Table S4. Those STRs are associated with 
many neurological disorders or used for forensic analysis. The repeat start position and 
end positions of repeats in GRCh38 were manually checked for further analysis.

Sequencing data for training and testing DeepRepeat

Nanopore data of the HTT gene from Huntington samples

To test DeepRepeat on pathogenic STR alleles, the HTT region on 11 samples with 
Huntington diseases and NA12878 (control) were sequenced on a nanopore GridION 
sequencer using the following process: We used a high-fidelity PCR enzyme (PrimeS-
TAR GXL DNA Polymerase, TaKaRa) to amplify the region flanking the CAG repeat 
region in the HTT gene. The amplicon region was chr4:3069608-3075517 (GRCh38 
coordinates). The forward primer was AAA​ACG​AGG​GTT​GTC​AAA​GAC​CCC​A, and 
the reverse primer was GAG​GGA​AGT​GGC​ACT​GAG​CAA​ATC​T. For each sample, 
a unique 16 bp barcode was added to the 5′-end of each forward and reverse primer. 
The PCR condition was 98 °C for 10 s, 68 °C for 10 min, 30 cycles (2-step PCR). The PCR 
products were pooled and purified using AMPure XP beads. The library was prepared 
using the ligation sequencing kit (SQK-LSK108, Oxford Nanopore sequencing) accord-
ing to the manufacturer’s instructions. The library was sequenced in the FLO-MIN106 
(R9.4) flow cell in the GridION Nanopore sequencer. Briefly, 2.0 μg pooled and purified 
PCR products were used as the input DNA of each library. End repair and dA-tailing was 
performed using NEBNext Ultra II End Repair/dA-tailing Module (catalog No. E7546). 
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In all, 7 μl Ultra II End-Prep buffer, 3 μl Ultra II End-Prep enzyme mix were added to 
the input DNA. The total volume was adjusted to 60 μl by adding nuclease-free water 
(NFW). The mixture was incubated at 20 °C for 5 min and 65 °C for 5 min. A 1 × vol-
ume (60 μl) AMPure XP clean-up was performed and the DNA was eluted in 31 μl NFW. 
One microliter of the eluted dA-tailed DNA was quantified using the Qubit fluorometer. 
A total of ≥ 1.0 μg DNA should be retained if the process was successful. Adaptor liga-
tion was performed using the following steps. Twenty microliter Adaptor Mix (ONT, 
SQK-LSK108 Ligation Sequencing Kit) and 50 μl NEB Blunt/TA Master Mix (NEB, cata-
log No. M0367) were added to the 30 μl dA-tailed DNA. The mixture was incubated at 
room temperature for 10 min. The adaptor-ligated DNA was cleaned up using 40 μl of 
AMPure XP beads. The mixture of DNA and AMPure XP beads was incubated for 5 min 
at room temperature and the pellet was washed twice by 140 μl ABB (SQK-LSK108). The 
purified-ligated DNA was resuspended in 15.5 μl ELB (SQK-LSK108). A 1-μl aliquot was 
quantified by fluorometry (Qubit) to ensure ≥ 500 ng DNA was retained. The final library 
was prepared by mixing 35.0 μl RBF (SQK-LSK108), 25.5 μl LBB (SQK-LSK108), and 
14.5 μl purified-ligated DNA. The library was loaded to R9.4 flow cells (FLO-MIN106, 
ONT) according to the manufacturer’s guidelines. GridION sequencing was performed 
using default settings for the R9.4 flow cell and SQK-LSK108 library preparation kit. The 
sequencing was controlled and monitored using the MinKNOW software developed by 
the manufacturer. In total, 5.24 Gb data was generated.

Then, Albacore v2.3.1 was used to conduct basecalling with events, which was 
required by DeepRepeat (note that while the Albacore software is obsolete for basecall-
ing, we only used it to infer an event table, and we did not use basecalled sequences). 
After demultiplexing, the long reads were downsampled for each sample. As a result, 
there were ~4000 long reads for eight samples, ~ 2800 long reads for one sample, ~ 2400 
long reads for two samples, and ~2000 long reads for one sample. The majority of long 
reads had ~ 6000 bp as expected. The CAG repeat counts for each sample were provided 
in [48] where the repeat counts for 12 samples ranged from 17 to 72.

Nanopore data for GGG​GCC​ repeats

Giesselmann et al. recently published a nanopore data set on synthetic DNA molecules 
with GGG​GCC​ repeats [37] after polymerase chain reaction (PCR). Among them, 5 
synthetic DNA had enough reliable data with 8, 32, 50, 56, and 76 GGG​GCC​ repeats, 
respectively. The nanopore data for these synthetic DNA was basecalled with event 
information using Albacore version 2.3.1. DeepRepeat used the event information, but 
not basecalled sequences for repeat detection.

Whole genome nanopore data

Two published nanopore data of human DNA genome, NA12878 and HX1, were used 
in training and testing DeepRepeat. The fast5 files in the two genomes were downloaded 
from https://​github.​com/​nanop​ore-​wgs-​conso​rtium/​NA128​78/​blob/​master/​Genome.​
md and PRJNA533926 at NCBI and basecalled with Albacore version 2.3.1 with event 
information. Then, there were 12,743,232 passed long reads for NA12878 with ~38X 
coverage and 11,210,579 passed long reads for HX1 with 51X coverage.

https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
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Short reads data to infer benchmark repeat counts for evaluating DeepRepeat

High-coverage short-read data of NA12878 and HX1 were used to infer repeat counts 
of manually curated STR loci for evaluating DeepRepeat. For NA12878, a BAM file of 
~300X coverage of 150 bp HiSeq2500 short reads data was downloaded from NIST, and 
for HX1, the short reads data published in [49] were used with ~ 1.42 million paired 
reads and ~142X coverage of ~ 429 Gigabases. The short reads of HX1 were aligned with 
GRCh38 using minimap2 [41] with the parameters for paired short reads. HipSTR [26] 
was used to detect repeat counts of manually curated STRs in both NA12878 and HX1 
with the minimum support reads of 10. Since short-read sequencing has less than 0.5% 
error rates, it is expected that the repeat counts of STR regions are accurate for testing 
DeepRepeat on long reads data.

DeepRepeat framework

DeepRepeat is a STR detection tool using a deep convolutional neutral network on 
nanopore signals. The input is a reference genome, an aligned bam file and fast5 files 
with basecalled events; the output is a repeat count distribution for an individual. In 
DeepRepeat, there are several steps: converting nanopore signals to image representa-
tion, classifying repeats and non-repeats with a deep learning framework, and quantify-
ing repeat counts for long reads with peak calling for an individual.

Image conversion

In DeepRepeat, events together with signals in fast5 files for each long read were used to 
generate image representation. Usually, each event, anchored to a nucleotide, was asso-
ciated with a series of signals. Before the conversion, raw signals were first normalized 
for each long read using the method in reference [50]. The range of normalized signals 
is from − 5 to 5. After that, the normalized signals were discretized into 50 non-over-
lapped bins with bin step equal to 0.2, and the 50-bin vector of signals was used to rep-
resent each event: the value in a bin was the fraction of the number of signals falling 
into that bin over the number of signals of the event, and the fraction was normalized 
with the range from 0 to 255, similar to value range in color images. Then, given a repeat 
unit of the length equal to R, each nucleotide in the repeat unit can be represented by a 
50-bin vector, and R vectors were consecutively stacked to generate a black-white image 
with 50 as height and R as width.

In a L-base long read of n0, n1, ⋯, nj − R, nj − R + 1, ⋯, nj, nj + 1, ⋯, nj + R, nj + R + 1,⋯nj + 2R, 
⋯, nL, any black-white image of a R-mer at nj and its upstream/downstream of images at 
nj − R and nj + R were considered as three channel of a color image. With this representa-
tion, if the three directly adjacent R-mers are repeats, it is expected that the non-zero 
values of the three channels in an image are at the same position in the color image. 
In an ideal case, the color image of three consecutive repeat units would only have R 
white dots, where the three channels all have 255 at the R positions and 0 at all other 
positions in repeat images (similar to what is shown in the left of Fig. 1). Impurities in 
the repeat unit (imperfect tandem repeats) can still be represented as a white line with 
some noises, such as gray dots within white dots. In contrast, images which are gener-
ated from non-repeat regions would have much less non-overlapped non-zero values for 
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any two channels, and thus different colors are randomly dispersed in images (as shown 
in the left of Fig. 1.).

Deep learning classification

After converting signals into color images with three channels, the next step was to 
design a deep convolutional neural network (CNN) to learn the patterns in images from 
repeat regions against images from non-repeat regions. CNN is regularized multilayer 
perception network where hierarchical local patterns in images are learned from origi-
nal images with several convolutions/pooling layers. A neuron in a convolutional layer 
learns knowledge only from a restricted region in the previous layer rather than all 
regions in the previous layer to avoid significant overfitting. As multiple convolutional/
pooling layers are used, more abstract local patterns with a larger region are learned, and 
are used as input of a fully connected network, possibly with another full connection 
hidden layer, for final prediction. CNN has been successfully applied in image recog-
nition and classification [51], and natural language processing [52], and achieved great 
improvement to reduce the classification errors [51, 52].

In DeepRepeat, two hidden convolutional and pooling layers were used with 32 4X1 
filters and 64 3X1, respectively, as shown in Fig. 1. The convolutional and pooling layer 
transformed the images’ size from 50X R with 3 channels, to 25X R with 32 depth, and 
then to 13x R with 64 depth. The 3-dimension data was flattened to form a vector with 
832* R values for the input of a full connection network where the hidden layer had 512 
neurons and the final output had 4 possibilities: “not in a repeat,” “in a repeat,” “deletion 
in a repeat,” or “insertion in a repeat.” For example, as shown in Fig. 1, for a repeat motif 
with 3 bp, the first convolutional and pooling layer led to 25X3X32 matrices, while the 
second layer led to 13X3X64; after flattening, the fully connection network had 2496 val-
ues for the first layer and 512 for the second layer and then generated 4 possibilities. In 
the training process of DeepRepeat, the Adam optimizer algorithm [53] was used based 
on the loss function of softmax cross entropy between the prediction and the bench-
mark labels of each base.

Repeat count quantification

With a well-trained DeepRepeat model, STR prediction was made on all nucleotides in 
each long read, or only on those bases in long reads which were aligned against refer-
ence regions of interest. For the latter case, all fastq sequences of a set of fast5 files were 
aligned against GRCh38 using minimap2 [41] with the parameters for nanopore long 
reads. Then, for each long read aligned against a region of interest, consecutive STR pre-
diction was predicted, and any of the consecutive STR regions were merged if the length 
of the STR regions is 3 times longer than the length of repeat units and if the distance 
between two close STR regions was shorter than the length of repeat units. The length 
of merged STR regions was divided by the length of repeat units to get the repeat count 
in this long read. In a similar way, repeat counts were estimated for all long reads aligned 
with the region of interest, and a histogram of repeat counts was generated where the 
entry was the repeat count and the entry’s value was the times of this repeat count 
detected in all long reads aligned against the region of interest.
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With the assumption that each repeat count of true alleles followed a Gaussian dis-
tribution in the histogram of repeat count, Gaussian mixture model implemented in 
scikit-learn was used to call the peak for the repeat region of interest. To do that, each of 
different Gaussian components (ranging from 3 to 7) was evaluated in Gaussian mixture 
model 20 times, and a model was selected with the best Akaike information criterion. 
After that, the peaks were called with more supporting reads (this process was similar to 
the peak calling process in our previous work of RepeatHMM [29]). The output would 
be one repeat count number for homogeneous alleles and two repeat count numbers 
for heterogeneous alleles. If the data for a sample had low coverage, users are advised 
to check the histogram for repeat count inference rather than using Gaussian mixture 
model, since Gaussian mixture model requires enough data for accurate inference.

Training and testing

Labeling converted images

After converting signals to color images, a critical issue in training DeepRepeat was to 
obtain a larger set of labeled instances of images for repeat regions and for non-repeat 
regions. Given a set of nanopore data and a list of STR regions of interest, the general 
process below was used to assign label (“in repeat” or “not in repeat” or “a deletion in 
repeat” or “an insertion in repeat”) to images. After fastq sequences of long reads were 
aligned with a reference genome (GRCh38 in this study), (i) if a nucleotide was aligned 
with any base in any repeat region, “in repeat” was assigned to the image centered at 
the nucleotide in the long read; (ii) if a nucleotide was a 1-bp insertion (deletion) in 
repeat regions, “an insertion in repeat” (“a deletion in repeat”) was assigned to the image 
centered at the nucleotide in the long read; (iii) if a nucleotide was clipped or inserted 
(larger insertions) starting at STR regions or aligned with STR regions which were not of 
interest, images are constructed without no label (not used for training or testing); and 
(vi) for other nucleotide in the long reads which are not aligned with any STR regions, 
images are constructed with the labels “not in repeat.” By default, nucleotides were con-
sidered if they are 1.5* M bp away from all STR regions of interest where M is the length 
of a STR region.

Motif groups for training DeepRepeat models

In DeepRepeat, STR motifs of repeat units are usually considered as a group rather than 
individually. This is because a STR region has different repeat motifs. For example, in a 
repeat template region “CAG​CAGC​AGCA​G,” all three STR motifs “CAG,” “AGC,” and 
“GCA” occur; at the same time, for the complementary repeat region “CTG​CTGCT​GCT​
G,” all three STR motifs “CTG,” “TGC,” and “GCT” occur. Thus, the 6 STR motifs can be 
considered together as a group to have a single DeepRepeat training model. The smaller 
motif in an alphabetic order (AGC) was used to represent this motif group. There were 
two more advantages for this grouping strategy: more instances were available for train-
ing a DeepRepeat mode, and less well-trained DeepRepeat models were generated.

Using the grouping strategy above, there are several different motif groups for repeat 
units with various lengths. For example, for trinucleotide repeats, there are 60 possibili-
ties (“AAA,” “CCC,” “TTT,” and “GGG” are not considered since they are mononucle-
otide repeats). The 60 possibilities can be categorized into 10 groups, and each group 
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has 6 repeat motifs. The similar group strategy was used for dinucleotide repeats, tetra-
nucleotide repeats, and penta-nucleotide repeats.

Training and testing process

The process for training and independently testing DeepRepeat was described below. (1) 
To test DeepRepeat on the HTT alleles of 11 samples with Huntington’s diseases and of 
NA12878, DeepRepeat was trained with 200 epochs on our in-house larger datasets of 
Huntington’s diseases for CAG repeats in the HTT gene in GRCh38. Estimated repeat 
counts by DeepRepeat was compared to true repeat counts to see the repeat count esti-
mation performance of different methods. The true repeat counts for the 12 samples 
were obtained from [48]. (2) On the published nanopore data of GGG​GCC​ repeat, since 
the sequences were synthetically generated, the data of the 3 sequences with the shorter 
repeat regions (8, 32, and 50 GGG​GCC​ repeats) were used to train DeepRepeat, and 
the 2 sequences with longer repeat regions were used to test DeepRepeat. Please note 
that there were only 3 GGG​GCC​ repeats in the reference sequence, and many inserted 
repeats were not used in training process for the 3 sequences; thus, the training instances 
were not large enough. (3) To test DeepRepeat on 57 manually curated STR loci and 
whole genome STRs for repeat nucleotide prediction, DeepRepeat was evaluated on 
the whole genome STRs under a cross-genome independent testing strategy: DeepRe-
peat was trained on NA12878 and tested on HX1, or vice versa. Since the whole genome 
STRs had different lengths of repeat units, DeepRepeat was trained for each motif 
group. For each motif group on a training data, at most 100 randomly selected repeats 
were used for each chromosome, when the size of training instances was much larger. 
In the training process, training instances were split into different batches with batch 
size of 512. To consider unbalanced instances of repeat images and non-repeat images, 
non-repeat images were split into different groups and each group had the similar size of 
repeat images. The learning rate was set to 0.005 at the first n iterations, to 0.001 before 
n*10 iterations, to 0.0005 before n ∗ 100 iterations and to 0.0001 after n*100 iterations. 
n usually was set to 5, but to 1 for some motif groups. The training stopped after 500 
epochs. In the cross-genome independent testing, a well-trained DeepRepeat model for 
a motif group on a genome was used to make repeat prediction on the other genome. In 
the evaluation of repeat-nucleotide performance for whole genome STRs, only labeled 
repeat and non-repeat were used, since the alignment of matched bases was believed to 
be accurate. For 57 manually curated STRs, the estimated repeat counts were compared 
against repeat counts calculated from high-coverage short-read data. Given 0.05% error 
rate of high-coverage short-read data and the shorter repeat regions of the 57 STRs, the 
repeat count inference from short-read data would be good enough as benchmark to 
evaluate repeat count estimation by DeepRepeat.

Quantification of telomere repeats in CHM13

We downloaded 30X nanopore raw signal data (fast5 files) from the GitHub repository 
of the Telomere-to-telomere consortium (https://​github.​com/​marbl/​CHM13). The fast5 
files were basecalled using Albacore v2.3.4, and the basecalled reads were aligned to the 
CHM13 v1.1 assembly using minimap2. After removing secondary and supplementary 
alignments, we used DeepRepeat to quantify telomere repeat length by supplying the 

https://github.com/marbl/CHM13
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fast5 files and the bam file. Of note, Albacore was only used to infer event tables (Guppy 
v5 cannot generate event tables), and we did not use basecalled sequence for repeat 
detection.

Detection of long STRs in CHM13

To obtain long STR regions to evaluate DeepRepeat, we run TRF to find tandem 
repeats from CHM13 v1.1 assembly sequence and required that the length of repeat 
units<=6 bp, length of repeat regions > 200 bp, and similarity between repeat copies 
> 85%. After that, we further removed STR regions that were within a 500 of another 
STR because many adjacent STRs have similar repeat motifs and it is hard to tell if they 
should be merged or not. In the final list, we have 439 long STR regions (Additional 
file 2: Table S1). We used the CHM13 v1.1 assembly as the reference genome and per-
formed repeat detection using DeepRepeat, RepeatHMM and STRique.

Validation of the STR loci in the NA12878 sample

To further evaluate DeepRepeat, nine  STR loci were selected to conduct Sanger 
sequencing on NA12878. We designed PCR primers within ~ 400 bp of a STR region of 
interest and then used a high-fidelity PCR enzyme (PrimeSTAR GXL DNA Polymerase, 
TaKaRa) to amplify each of the target selected STR regions. The PCR products were 
purified using AMPure XP beads and sequenced by Sanger sequencing. The STRs were 
validated by counting the numbers of repeat units in the Sanger sequencing results.
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